A neural network model approach to the study of human TAP transporter
نویسندگان
چکیده
We used an artificial neural network (ANN) computer model to study peptide binding to the human transporter associated with antigen processing (TAP). After validation, an ANN model of TAP-peptide binding was used to mine a database of HLA-binding peptides to elucidate patterns of TAP binding. The affinity of HLA-binding peptides for TAP was found to differ according to the HLA supertype concerned: HLA-B27, -A3 or -A24 binding peptides had high, whereas HLA-A2, -B7 or -B8 binding peptides had low affinity for TAP. These results support the idea that TAP and particular HLA molecules may have co-evolved for efficient peptide processing and presentation. The strong similarity between the sets of peptides bound by TAP or HLA-B27 suggests functional co-evolution whereas the lack of a relationship between the sets of peptides bound by TAP or HLA-A2 is against these particular molecules having co-evolved. In support of these conclusions, the affinities of HLA-A2 and HLA-B7 binding peptides for TAP show similar distributions to that of randomly generated peptides. On the basis of these results we propose that HLA alleles constitute two separate classes: those that are TAP-efficient for peptide loading (HLA-B27, -A3 and -A24) and those that are TAP-inefficient (HLA-A2, -B7 and -B8). Computer modelling can be used to complement laboratory experiments and thereby speed up knowledge discovery in biology. In particular, we provide evidence that large-scale experiments can be avoided by combining initial experimental data with limited laboratory experiments sufficient to develop and validate appropriate computer models. These models can then be used to perform large-scale simulated experiments the results of which can then be validated by further small-scale laboratory experiments.
منابع مشابه
Combined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملProviding a Model for Detecting Tax Fraud Based on the Personality Types of Corporate Financial Managers using the Neural Network Approach
One of the management measures to reduce tax liabilities is non-payment of taxes through tax fraud. Because personality factors may play a role in explaining tax ethics, examining personality traits and aspects of tax fraud can help to better understand the factors that influence tax decisions. The main purpose of this study is to provide a model for detecting tax fraud based on the personality...
متن کاملA hybrid approach to supplier performance evaluation using artificial neural network: a case study in automobile industry
For many years, purchasing and supplier performance evaluation have been discussed in both academic and industrial circles to improve buyer-supplier relationship. In this study, a novel model is presented to evaluate supplier performance according to different purchasing classes. In the proposed method, clustering analysis is applied to develop purchasing portfolio model using available data in...
متن کاملPrediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence
Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- In silico biology
دوره 1 2 شماره
صفحات -
تاریخ انتشار 1998